Search for $ZH \rightarrow \ell^+\ell^-b\overline{b}$ at DØ

John BackusMayes – *University of Washington*

On Behalf of the DØ Collaboration

Lake Louise Winter Institute 16 February, 2010

Introduction

- $114 < m_H < 186 \text{ GeV}$ with low masses preferred
- SM Higgs below 135 GeV decays mostly to $b\overline{b}$
- $\sigma(p\overline{p} \rightarrow b\overline{b}) \approx 10^6 \cdot \sigma(p\overline{p} \rightarrow H \rightarrow b\overline{b})$
- Reduce multijet background: look for associated $Z \rightarrow \ell^+ \ell^- S/B \ 300x \ better$

- Final state: 2+ charged leptons (e, μ) , 2+ b-jets
- Irreducible background: $Z+b\overline{b}$, VZ, top pairs
- Instrumental background: b-tagged light jets, leptons identified as jets
- Strategy: accept as much signal as possible & use all available information

Z Selection

- Decay to muons: one muon $p_T > 15$ GeV, $|\eta| < 1.6$; other muon $p_T > 10$ GeV, $|\eta| < 2$
- Decay to electrons: $p_T > 15$ GeV, $|\eta| < 1.1, 1.5 < |\eta| < 2.5$
- $60 < m_{ff} < 150$ GeV, isolated in calorimeter & tracker

Z Selection

• Fill in gaps in coverage: identify muons as **isolated tracks**, electrons in ICR (between central and forward calorimeters) \rightarrow 15% improved signal acceptance

$b\overline{b}$ Selection

- Leading jet $p_T > 20$ GeV, other jets $p_T > 15$ GeV S/B = 0.0003
- Use neural network b-tagger to identify b-jets:

Events / Bin

- At least 2 loose *b*-tagged jets S/B = 0.006
- Exactly 1 tight *b*-tagged jet S/B = 0.003

Kinematic Fit

- $ZH \rightarrow \ell\ell bb$ final state is well-constrained: small missing energy, well-measured Z resonance
- To improve the dijet mass resolution and discriminate against non-Z background, allow the jet and lepton p_T , η , φ to vary within their resolutions, with constraints:
 - Dilepton mass = 91.2 ± 2.5 GeV
 - Vector sum of p_T 's = $0.0 \pm 7.0 \text{ GeV}$
- Significance under Higgs peak improves 5-10%

Discriminating Variables

- Dijet mass is most powerful single variable, but many other variables show significant separation power
- Angle between $b\overline{b}$ system and lepton in Z rest frame exploits angular behavior:
 - scalar Higgs vs. vector gluon
 - s-channel ZH vs. t-channel Z+jets

Random Forest

- Decision trees handle correlated input variables better that neural nets, but individual trees can be unstable
- Random Forest: train several trees, each one using a random subset of the training sample, and a random subset of variables at each node—average over forest outperforms individual tree
- For each hypothetical Higgs mass (100 150 in 5 GeV steps) and b-tagging sample, we trained a random forest of 200 trees

Results

- 4.2 fb⁻¹ of data analyzed
- Preliminary Moriond '09 ZH limit: 9.1
 (8.0) x SM observed (expected) at m_H=115 GeV
- Much work was done to refine the analysis and produce final results with the same data
- Expected final limit 6-11% better than preliminary

Outlook

- Final result on 4.2 fb⁻¹ is coming soon!
- Data continues to accumulate:
 - DØ steadily taking data at or above 90% efficiency
 - Tevatron is performing very well: ∼60 pb⁻¹ per week
 - Almost 7 fb⁻¹ already recorded by DØ, and run through 2011 is very likely
- Many ways to improve the analysis:
 - Loosen b-tagging and lepton ID criteria
 - Analyze 2, 3-jet events separately
 - Handle initial and final-state radiation properly
 - Use more calorimeter and tracking information to improve dijet mass resolution
 - Et cetera...
- With a well-constrained final state and small instrumental background, $ZH \rightarrow \ell\ell bb$ is essential in the search for low-mass Higgs bosons at the Tevatron

BACKUP

Projections from CDF

- Probability of 2σ excess with 10 fb⁻¹: 40% with analyses as-is, 85% with factor of 1.5 improvement in sensitivity
- Probability of 3σ excess with 10 fb⁻¹: 10% with analyses as-is, 50% with factor of 1.5 improvement in sensitivity
- With run in 2011, total integrated luminosity will exceed 10 fb⁻¹